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0 Prologue

Example 0.0.1. Let z ∈ C, =(z) > 0. Let q = e2πiz and define Ramanujan’s tau
function

∆(z) = q ·
∏
n∈N

(1− qn)24 .

This is one of the simplest examples of a modular form. Note that we can ”multiply
out” the product above which leads us to

∆(z) =
∑
n∈N

τ(n)qn

for some integers τ(n).

Facts 0.0.2.

(1) Known to Weierstrass, 1850:

∆(z) = z−12 ·∆
(
−1

z

)
(2) Ramanujan proved in 1916 that the integers τ(n) satisfy the equation

τ(n) =
∑
d|n

d11 mod 691.

(3) Ramanujan also conjectured τ(nm) = τ(n)τ(m) for n,m coprime. This was proved
by Mordell in 1917.

(4) In 1972 Swinnerton-Dyer proved τ(n) satisfies congruences like (2) modulo 2, 3, 5,
7, 23 and 691 but no other primes.

(5) Ramanujan conjectured in 1916 for p prime holds |τ(p)| < 2 p11/2. This was proved
in 1974 by Deligne.

(6) The quantity
τ(p)

2p11/2
∈ [−1, 1]

is distributed in the interval [−1, 1] with density function proportional to
√

1− x2.
This was conjectured by Sato and Tate (1960s) and proved by Barnet-Lamb, Ger-
aghty, Harris and Taylor in 2009 using Bau Chau Ngo’s Fundamental Lemma which
got Ngo the 2010 Fields Medal.
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Example 0.0.3. We now consider another modular form

f(z) = q

∞∏
n=1

(1− qn)2(1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 + . . .

=
∞∑
n=1

a(n)qn ′ with a(n) ∈ N

We will later prove the following results:

Theorem.

1. We have a(mn) = a(m)(n) for all m,n ≥ 1 with (m,n) = 1.

2. We have |a(p)| ≤ 2
√
p for all primes p.

It turns out that this modular form is closely related to the elliptic curve

E : Y 2 + Y = X3 −X2 − 10X − 20.

For p prime, denote by N(p) the number of points on the elliptic curve in Fp. It is easy
to see heuristically tat N(p) ' p.

Theorem. (Hasse) We have
|p−N(p)| ≤ 2

√
p.

The theory of modular forms allows one to prove that the elliptic curve E and the
modular form f ‘correspond’ to each other in the following sense:

Theorem. For all primes p, we have

a(p) = p−N(p).

In particular, using the properties of the modular form f , we can easily calculate the
quantity N(p) for all p, so f ‘knows’ about the behaviour of the elliptic curve over Fp.
We say that the elliptic curve E is modular. It is generally not too difficult to attach
an elliptic curve to a modular form (this is called ”Eichler–Shimura”); however, it is
very difficult indeed to reverse this process, and this is the basis of Andrew Wiles’ work
on Fermat’s Last Theorem. The proof of this result was later completed by Breuil–
Conrad–Diamond–Taylor. I will talk a bit more about this when we discuss L-functions
of modular forms.
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1 The modular group

1.1 The upper half-plane

Definition 1.1.1. Let H = {z ∈ C : =(z) > 0} the upper half-plane.

Proposition 1.1.2. The special linear group SL2(R) = {A ∈ GL2(R) : det(A) = 1}
acts on H via (

a b
c d

)
.z =

az + b

cz + d
.

Proof. For z ∈ H is =(z) > 0 and either c or d is nonzero, so cz + d 6= 0. Moreover

=
(
az + b

cz + d

)
=

1

|cz + d|2
= ((az + b)(cz + d)) .

Say z = x+ iy for x, y ∈ R.

=
(
az + b

cz + d

)
=

1

|cz + d|2
=
(

(ax+ b)(cx+ d) + acy2︸ ︷︷ ︸
∈R

+i (ad− bc)︸ ︷︷ ︸
=1

y
)

=
1

|cz + d|2
=(z) > 0

Therefore az+b
cz+d
∈ H for any z ∈ H,

(
a b
c d

)
∈ SL2(R).

Also it is easy to check that
(

1 0
0 1

)
z = z and A(Bz) = (AB)z for any z ∈ H and for

any A,B ∈ SL2(R). Thus SL2(R) acts on H.

Note 1.1.3. The matrix
( −1 0

0 −1

)
∈ SL2(R) acts trivially on H, so the action of SL2(R)

on H factors through the quotient PSL2(R) = SL2(R)/(±1), the projective special
linear group.

Definition 1.1.4. The automorphy factor is the function

j : SL2(R)×H → C,

(g, z) 7→ cz + d for g =

(
a b
c d

)
Proposition 1.1.5. For any k ∈ Z, we can define a right action of SL2(R) on the set
of holomorphic functions H → C given by

(f |kg) (z) := j(g, z)−k f(gz)

where f : H → C holomorphic, g =
(
a b
c d

)
∈ SL2(R). We will call this the weight k

action.
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Proof. Firstly we need to show that f |kg is a well-defined holomorphic function H → C.
But this is obvious since cz + d 6= 0 and gz ∈ H for all z ∈ H. Clearly also the
equation f |k1 = f holds. Therefore it remains to show (f |kg)|kh = f |k(gh) for arbitrary
g, h ∈ SL2(R). The left hand side of the equation can be rewritten as

(f |kg)|kh = j(h, z)−k ((f |kg)(hz))

= j(h, z)−kj(g, hz)−kf(g(hz))

and the right hand side results in

f |k(gh) = j(gh, z)−kf((gh)z).

We already know (gh)z = g(hz). So it remains to show j(gh, z) = j(h, z)j(g, hz). This
is the so called cocycle relation and can be checked easily.

1.2 The modular group

Definition 1.2.1. The modular group is the group

SL2(Z) =

{
A =

(
a b
c d

)
; a, b, c, d ∈ Z, det(A) = 1

}
.

The projective modular group is PSL2(Z) = SL2(Z)/(±1).

Theorem 1.2.2. (a) The group SL2(Z) is generated by S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

(b) Every orbit of SL2(Z) acting on H contains a point of the set D defined by

D =

{
z ∈ H : − 1

2
≤ <(z) ≤ 1

2
and |z| ≥ 1

}
.

(c) If z ∈ D and gz ∈ D for some g ∈ SL2(Z), then either g = ±1 and gz = z or z
lies on the boundary of D.

(d) The stabilizer of z ∈ H in PSL2(Z) is trivial unless z is in the orbit of i or in the
orbit of ρ = e2πi/3.

Proof. We will prove all of these statements in 4 steps using a very elegant argument of
Serre. Let G = SL2(Z) and G′ = 〈S, T 〉 ≤ G.

Step 1. Every G′ orbit in H contains a point of D.

Proof of Step 1. Let z ∈ H. Since |cz+d| ≥ |c =(z)| and |cz+d| ≥ |c <(z)+d| there exist
only finitely many (c, d) ∈ Z2 such that |cz+d| < 1. Recall =(

(
a b
c d

)
z) = |cz+d|−2 =(z).

This implies there are only finitely many g ∈ G′ such that =(gz) > =(z). So the G′

orbit of z contains a point of maximal imaginary part. Let this point be z.
We can assume <(z) ∈ [−1

2
, 1

2
] since Tz = z + 1. Moreover =(Sz) = |z|−2 =(z). But

z is a point of maximal imaginary part in the orbit of G′, so we get |z|−2 =(z) ≤ =(z)
implying |z| ≥ 1. Thus z ∈ D. Clearly this proves part (b) of the theorem.
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Step 2. If z ∈ D and gz ∈ D, where g ∈ G, then one of the following holds:

1. g = ±Id

2. g = ±S and |z| = 1

3. g = ±T and <(z) = −1
2
, or g = ±T−1 and <(z) = 1

2

4. g = ±ST = ±
(

0 −1
1 1

)
or g = ±T−1S = ±

(
−1 −1
1 0

)
or g = ±ST−1S = ±

( −1 0
−1 −1

)
and z = ρ

5. g = ±TS = ±
(

1 −1
1 0

)
or g = ±ST−1 = ±

(
0 −1
1 −1

)
or g = ±STS = ±

( −1 0
1 −1

)
and

z = ρ+ 1

Proof of Step 2. Let z ∈ D and g =
(
a b
c d

)
∈ G such that z′ = gz ∈ D. Being free

to replace g by g−1 and z by z′ we can assume that =(z′) ≥ =(z). Again recalling
=(gz) = |cz + d|−2 =(z) we gain |cz + d| ≤ 1. Furthermore we have

|cz + d| ≥ |c| =(z) ≥ |c| =(ρ) =

√
3

2
|c|.

Thus |c| ≤ 2/
√

3 < 2. As c ∈ Z we get c = 0 or c = ±1.

• Let c = 0. Since 1 ≥ |cz + d| = |d| we have d = 0 or d = ±1. But c = d = 0 is
impossible. So d = ±1 and hence a = ±1. Therefore g =

( ±1 b
0 ±1

)
is the translation

by b. But since

<(z), <(gz) ∈
[
−1

2
,

1

2

]
,

this implies that b = 0 or b = ±1. So either g = ±Id (case 1) or g = ±T and
<(z) = −1

2
or g = ±T−1 and <(z) = 1

2
.

• Let c = 1. Assuming |d| ≥ 2 leads to the following contradiction:

1 ≥ |cz + d| = |z + d| ≥ |d| − <(z) ≥ |d| − 1

2
≥ 3

2

Thus we have d = 0 or d = ±1.

Let d = 0. Then 1 ≥ |cz + d| = |z|. On the other hand |z| ≥ 1 as z ∈ D and
therefore |z| = 1 (cases 2, 4 or 5 – exercise sheet 1).

Let d = 1. Then 1 ≥ |z + 1|. This is only possible for z ∈ D if z = ρ (exercise).
Since a− b = 1, we deduce that wither (a, b) = (1, 0) or (a, b) = (0,−1) (case 4).

Analogue d = −1 implies z = ρ+ 1 (case 5).

• The case c = −1 is analogous to the case c = 1.

Since there are no further cases this shows Step 2 (it remains to check the matrices in
case 4 and 5 – see exercise sheet 1) and therefore part (c) of the theorem.
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Step 3. Let z ∈ D such that the stabilizer Gz of z is not ±Id. Then z = i, z = ρ or
z = ρ+ 1.

Proof of Step 3. This follows directly from Step 2 by checking gz = z for all possible
g’s. Step 3 proves part (d) of the theorem.

Step 4. It remains to show that SL2(Z) is generated by S and T .

Proof of Step 4. Let g ∈ G and let z be an arbitrary point of the interior of D. Then
gz ∈ H and by Step 1 exists g′ ∈ G′ such that g′(gz) ∈ D. Moreover Step 2 implies that
either g′g ∈ {± Id} or z is on the boundary of D which is by assumption not the case.
Thus either g′g = Id or g′g = − Id. Since S2 = − Id ∈ G′, we deduce that g ∈ G′, so
SL2(Z) is generated by S and T . This proves part (a) of the theorem.

Therefore the theorem is proved.

Remark 1.2.3. We have seen in the proof of Theorem 1.2.2 that SL2(Z) is generated
by the elements S and T . These satisfy the relations

S4 = Id (ST )3 = S2,

and one can show that these generate all the relations, i.e. that

〈S, T |S4, S−2(ST )3〉

is a presentation of the group SL2(Z).

Remark 1.2.4. The set D is called the fundamental domain. The figure below
represents D itself and the transforms of D by some group elements of SL2(Z). Part (c)
of the theorem shows that two sets gD and g′D where g, g′ ∈ SL2(Z) are either equal
(if g′ = ±g) or only intersect along their edges. Furthermore part (a) implies that H is
covered by the sets {gD : g ∈ SL2(Z)}: they form a tesselation of H.
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1.3 Modular forms and modular functions

Definition 1.3.1. A weakly modular function of weight k and level 1 is a mero-
morphic function H → C such that f |kα = f for all α ∈ SL2(Z), or equivalent

f

(
az + b

cz + d

)
= (cz + d)k f(z)

for all z ∈ H and for all
(
a b
c d

)
∈ SL2(Z).

Note 1.3.2. Since SL2(Z) is generated by the matrices S and T , it is sufficient to check
invariance under these two matrices, i.e. that

f(z + 1) = f(z) and f(−1/z) = zkf(z)

for all z ∈ H.

Lemma 1.3.3. There are no nonzero weakly modular functions of odd weight.

Proof. Let k be odd and let f be a weakly modular function of weight k. As shown
in (2) we have f(z) = f(z + 1) for all z ∈ H. Moreover we get f(z) = −f(z + 1) for
all z ∈ H, since f |k

( −1 −1
0 −1

)
= −f(· + 1). So f(z) = −f(z) and thus f(z) = 0 for all

z ∈ H.

Define the function

q : H → C,
z 7→ exp(2πiz).

Note 1.3.4. Now let f be weakly periodic of weight k. Then f is periodic with period
1, so it can be written in the form

f(z) = f̃(exp(2πiz)),

where f̃ is a meromorphic function on the punctured unit disk

D∗ = {q ∈ C : 0 < |q| < 1}.

Note 1.3.5. The function f̃ is defined by

f̃(q) = f

(
log q

2πi

)
.

Observe that the logarithm is multi-valued, but choosing a different value of the logar-
ithm is the same as adding an integer to log q

2πi
. The periodicity of f hence implies that

f̃(q) does not depend on the chosen value of the logarithm.
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Note 1.3.6. Any weakly modular function can be written as

f(z) =
∞∑

n=−∞

anq
n

for some an ∈ C where q = e2πiz; we call this the q-expansion of f . This is just the
Laurent series of f̃ around q = 0, which converges for 0 < |q| < ε for ε sufficiently small
(⇔ =(z)� 0)

Definition 1.3.7.

• We say that f is meromorphic at ∞ if an = 0 for n < −N and some N ∈ N.

• We say that f is holomorphic at ∞ if an = 0 for n < 0. In this case, we define the
value of f at ∞ to be f(∞) = f̃(0) = a0.

Definition 1.3.8. Let f be a weakly modular function of weight k and level 1.

1. If f is meromorphic on H ∪ {∞} we say f is a modular function (of weight k
and level 1).

2. If f is holomorphic on H ∪ {∞} we say f is a modular form (of weight k and
level 1).

3. If f is holomorphic on H ∪ {∞} and f(∞) = 0 we say f is a cuspidal modular
form or cusp form.

Note 1.3.9. If f and g are modular forms (resp. modular functions) of level 1 and
weights k and `, then the product fg is a modular form (resp. modular function) of
weight k + `.

1.4 Eisenstein series

Definition 1.4.1. Let k ≥ 4 even. Define the Eisenstein series of weight k to be
the function Gk : H → C given by

Gk(z) =
∑

(m,n)∈Z2\{0}

1

(mz + n)k
. (1.1)

Recall the following result from complex analysis:

Proposition 1.4.2. Let U be an open subset of C, and let (fn)n ≥ 0 be a sequence of
holomorphic functions on U that converges uniformly on compact subsets of U . Then
the limit function U → C is holomorphic.
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Lemma 1.4.3. The series defining Gk(z) converges absolutely and uniformly on subsets
of H of the form

Rr,s = {x+ iy : |x| ≤ r, y ≥ s}.

It hence converges to a holomorphic function on H.

Proof. Let z = x+ iy ∈ Rr,s. We have

|mz + n|2 = (mx+ n)2 +m2y2 ≥ (mx+ n)2 +m2s2.

For fixed m and n, we distinguish the cases |n| ≤ 2r|m| and |n| ≥ 2r|m|. In the first
case, we have

|mz + n|2 ≥ m2s2 ≥ s2

2
m2 +

s2

2(2r)2
n2 ≥ min

{
s2

2
,
s2

8r2

}
· (m2 + n2).

In the second case, the triangle inequality implies

|mz + n|2 ≥ (|mx| − |n|)2 +m2s2 ≥
(
|n|
2

)2

+m2s2 ≥ min

{
1

4
, s2

}
· (m2 + n2).

Combining both cases and putting

c = min

{
s2

2
,
s2

8r2
,
1

4
, s2

}
,

we get the inequality

|mz + n| ≥ c1/2(m2 + n2)1/2 for all m,n ∈ Z, z ∈ Rr,s.

Hence for all z ∈ Rr,s, we have

Gk(z) ≤ 1

ck/2

∑
(m,n)6=(0,0)

1

(m2 + n2)k/2
.

We rearrange the sum by grouping together, for each fixed j = 1, 2, 3, . . . , all pairs (m,n)
with max{|m|, |n|} = j. We note that for each j there are 8j such pairs (m,n), each of
which satisfies

j2 ≤ m2 + n2.

Hence

|Gk(z)| ≤ 1

ck/2

∞∑
j=1

8j

jk
=

8

ck/2

∞∑
j=1

1

jk−1
,

which is finite and independent of z ∈ Rr,s, so Gk(z) converges absolutely and uniformly
on Rr,s. Since every compact subset of H is contained in some Rr,s, this finishes the
proof by Proposition 1.4.2.
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Remark 1.4.4. This proof clearly fails for k = 2. One can show that for k = 2, the
series (1.1) is conditionally but not absolutely convergent. We will come back to this
issue later in the course.

Proposition 1.4.5. For every even integer k ≥ 4, the function Gk is a modular form
of weight k and level 1. The q-expansion of Gk is given by

Gk(z) = 2 ζ(k) +
2 · (2πi)k

(k − 1)!
·
∞∑
n=1

σk−1(n)qn

where ζ(k) =
∑∞

n=1
1
nk (the Riemann zeta function) and σk−1(n) =

∑
d|n d

k−1.

Proof. One easily checks that Gk(z + 1) = Gk(z). Moreover, we have

Gk

(
−1

z

)
=

∑
(m,n)∈Z2\{0}

1

(m(−1
z
) + n)k

= zk
∑

(m,n)∈Z2\{0}

1

(−m+ nz)k

= zk Gk(z).

Hence Gk|kS = Gk and Gk|kT = Gk, so Gk|kα = Gk for all α ∈ SL2(Z) by Theorem
1.2.2 (a). Thus Gk is a weakly modular function of weight k and level 1.

It remains to show that Gk is holomorphic at ∞. Therefore we will determine the
q-expansion of Gk. Consider the formula

∑
n∈Z

1
z+n

= π · cot(πz). Thus we obtain

∑
n∈Z

1

z + n
= π · cot(πz) = iπ

(
e2πiz + 1

e2πiz − 1

)
= iπ

(
1 +

2

q − 1

)
= iπ − 2πi

∞∑
n=0

qn,

where q = e2πiz. Differentiating (k − 1) times with respect to z, and using that ∂
∂z

=
2πiq ∂

∂q
, leads to

∑
n∈Z

−(k − 1)!

(z + n)k
=

∂k−1

∂zk−1

(
iπ − 2πi

∞∑
n=0

qn

)

= −2πi
∞∑
n=1

(2πin)k−1qn

= −(2πi)k
∞∑
n=1

nk−1qn

(We are using here that k is even; for k odd we get an additional − sign.)
Hence we get

tk(z) :=
∑
n∈Z

1

(z + n)k
=

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinz.

12



Now we can split up the original sum of the function Gk into two parts, one where
m = 0 and one where m 6= 0. Afterwards we will simplify both parts using symmetry
(remember again that k is even) of the sums and the above formula:

Gk(z) =
∑

n∈Z\{0}

1

nk
+

∑
m∈Z\{0}

∑
n∈Z

1

(mz + n)k

= 2
∞∑
n=1

1

nk
+ 2

∞∑
m=1

∑
n∈Z

1

(mz + n)k

= 2ζ(k) + 2
∞∑
m=1

tk(mz)

= 2ζ(k) + 2
∞∑
m=1

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinmz

= 2ζ(k) +
2 · (2πi)k

(k − 1)!

∞∑
m=1

∞∑
n=1

nk−1qnm

From there we obtain the proposed q-expansion by resorting the last sum:

Gk(z) = 2ζ(k) +
2 · (2πi)k

(k − 1)!

∞∑
l=1

∑
d|l

dk−1

︸ ︷︷ ︸
σk−1(l)

ql

And since Gk has a q-expansion without any negative powers of q, Gk is holomorphic at
∞. Thus Gk is indeed a modular form.

Definition 1.4.6. The Bernoulli numbers are the rational numbers Bk, for k ≥ 0,
defined by the equation

t

exp(t)− 1
=
∞∑
k=0

Bk

k!
tk ∈ Q[[t]].

Remark 1.4.7. The Bernoulli numbers are of great importance in mathematics. Barry
Mazur once said: “When a Bernoulli number sneezes, the tremors can be felt in all of
mathematics.”

Lemma 1.4.8. We have

Bk 6= 0 ⇔ k = 1 or k is even.

Proof. Exercise sheet 2.

Example 1.4.9. The first few non-zero Bernoulli numbers

B0 = 0, B1 = −1

2
, B2 =

1

6
, B4 = −1

3
, B6 =

1

42
,

B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
.
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Lemma 1.4.10. If k ≥ 2 is an even integer, then

ζ(k) = −(2πi)kBk

2 · k!
.

Proof. Exercise sheet 2.

Definition 1.4.11. Let k ≥ 4 be even. The normalised Eisenstein series of weight k
is given by

Ek(z) =
1

2ζ(k)
Gk(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

1.5 The valence formula

Definition 1.5.1. Let f 6= 0 be a meromorphic function H → C and let P ∈ H. The
unique integer n such that (z−P )−nf(z) is holomorphic and non-vanishing at P is called
the order of f at P and denoted by vP (f). We say f has a zero of order n at P if
n is positive, and f has a pole of order n at P if n is negative.

Definition 1.5.2. Consider the Laurent expansion of f around P

f(z) =
∑
n≥n0

cn(z − P )n.

Then the residue of f at P is ResP (f) = c−1 ∈ C.

Lemma 1.5.3. If f is meromorphic around a point P , then

ResP (f/f ′) = vP (f).

Proof. Exercise.

We recall without proof the following results from complex analysis:

Theorem 1.5.4. (Cauchy’s integral formula) Let g be a holomorphic function on an
open subset U ⊆ C and let C be a contour in U . Then for each P ∈ U , we have∫

C

g(z)

z − P
dz = 2πi · g(P ).

Corollary 1.5.5. Let C(P, r, α) be an arc of a circle of radius r and angle α around a
point P . If g is holomorphic at P , then

lim
r→0

∫
C(P,r,α)

g(z)

z − P
dz = αi · g(P ).

(Here, we integrate counterclockwise.)
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The following result relates the contour integral of the logarithmic derivative of f to
the orders of f at the interior points:

Theorem 1.5.6. (Argument principle) Let f be a meromorphic function on an open
subset U ⊆ C, and let C be a contour in U not passing through any zeros or poles of f .
Then ∫

C

f ′(z)

f(z)
dz = 2πi

∑
P∈int(C)

vP (f).

Note 1.5.7. By Lemma 1.5.3, we have∫
C

f ′(z)

f(z)
dz = 2πi

∑
P∈int(C)

ResP (f ′/f). (1.2)

Corollary 1.5.8. Let C(P, r, α) be an arc of a circle of radius r and angle α around a
point P . If f is meromorphic at P , then

lim
r→0

∫
C(P,r,α)

f ′(z)

f(z)
dz = αi · vP (f).

Now assume that f is a weakly modular funktion (of weight k and level 1).

Remark 1.5.9. Since f |kα = f for all α ∈ SL2(Z), we have vαP (f) = vp(f). Hence
vP (f) is well-defined for P being a SL2(Z) orbit in H.

Moreover, if f is meromorphic at ∞, we can define the order of f at ∞ by

v∞(f) := v0(f̃).

The following theorem is fundamental for studying the spaces of modular forms:

Theorem 1.5.10. (The valence formula) Let f 6= 0 be a modularfunction of weight k
and level 1. Then f has finitely many SL2(Z)-orbits of zeros and poles in H, and

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
P∈W

vP (f) =
k

12
, (1.3)

where ρ = e2πi/3 and W is the set of all SL2(Z)-orbits in H except the orbits of i and ρ.

Proof. Recall the fundamental domain from 1.2.2 and let C be the contour as shown in
the figure below. Here =(A) = =(E) = R (we will later let R → +∞) and the three
small circles have radius r. We assume that R is sufficiently large and r sufficiently small
that the interior of C contains all the zeros and poles of f except those at i, ρ, ρ+ 1 and
∞.

Simplifying assumption: We assume for simplicity f has no zeros or poles on the
boundary of the fundamental domain, except possibly at i and ρ. (In the case where it
does contain zeros or poles of f , the contour has to be modified using additional small
arcs going around these zeros or poles in the counterclockwise direction.)

We will now calculate
∫
C
f ′(z)
f(z)

dz in two different ways and compose the results after-
wards.

15



(1) Computing the integral using Theorem 1.5.6, we get∫
C

f ′(z)

f(z)
dz = 2πi

∑
P∈interior(C)

vP (f) = 2πi
∑
P∈W

vP (f),

where W is the set described in the stated theorem. The last equality is satisfied
by the simplifying assumption, so the interior of the fundamental domain contains
exactly one representative of every pole or zero SL2(Z)-orbit of H.

(2) Secondly, we estimate the integral by splitting up the contour in 8 parts. Let C1

be the part from E to A, C2 be the part from A to B, and so on, such that in the
end C8 is the part from D′ to E.

(i) Note that since f is a modular function, we have f(z) = f(z+ 1). Hence also
f ′(z) = f ′(z + 1), and we have∫

C2

f ′(z)

f(z)
dz =

∫
C2

f ′(z + 1)

f(z + 1)
dz = −

∫
C8

f ′(z)

f(z)
dz,

so ∫
C2

f ′(z)

f(z)
dz +

∫
C8

f ′(z)

f(z)
dz = 0.

(ii) Now we consider C1 and change the variable by q(z) = e2πiz. This maps C1 to
a clockwise oriented circle around the origin with radius e−2πR. Furthermore
we have f(z) = f̃(q(z)), thus f ′(z) = f̃ ′(q(z)) q′(z) and since f is a modular

16



function, f̃ is meromorphic at 0. Therefore∫
C1

f ′(z)

f(z)
dz =

∫
C1

f̃ ′(q(z))q′(z)

f̃(q(z))
dz

=

∫
q(C1)

f̃ ′(q)

f̃(q)
dq

= −2πiRes0

(
f̃ ′

f̃

)
= −2πi v0(f̃)

= −2πi v∞(f).

(iii) C5 is half of a circle around i. We deduce from Corollary 1.5.8 that

lim
r→0

∫
C5

f ′(z)

f(z)
dz = −1

2
2πi vi(f).

Similarly we get

lim
r→0

∫
C3

f ′(z)

f(z)
dz = −1

6
2πi vρ(f)

lim
r→0

∫
C7

f ′(z)

f(z)
dz = −1

6
2πi vρ+1(f) = −1

6
2πi vρ(f).

(iv) So it remains to study C4 and C6. Therefore consider u(z) = −1
z
. This maps

C6 to −C4 and we have f(z) = z−kf(u(z)), hence

f ′(z) = −kz−k−1f(u(z)) + z−kf ′(u(z))u′(z).

So ∫
C4

f ′(z)

f(z)
dz =

∫
C4

−k
z
dz +

∫
C4

f ′(u(z))u′(z)

f(u(z))
dz

=
2πik

12
+

∫
u(C4)

f ′(u)

f(u)
du

=
2πik

12
−
∫
C6

f ′(u)

f(u)
du

and thus ∫
C4

f ′(z)

f(z)
dz +

∫
C6

f ′(z)

f(z)
dz = 2πi

k

12
.

Composing (i) to (iv) yields∫
C

f ′(z)

f(z)
dz = 2πi

(
k

12
− 1

3
vρ(f)− 1

2
vi(f)− v∞(f)

)
.

Combining this with the result in (1) gives us exactly the proposed formula.
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1.6 Applications to modular forms

The valence formula provides some interesting consequences to spaces of modular forms
which we will investigate below.

Definition 1.6.1. Let Mk be the set of all modular forms of weight k and level 1 and
let Sk be the set of all cusp forms of weight k and level 1.

Remark 1.6.2. It can be easily checked that these are both vector spaces over C.

Lemma 1.6.3.

(a) Mk = {0} for k < 0 and k = 2.

(b) Sk = {0} for k < 12.

(c) M0 is the set of all constant functions H → C and thus isomorphic to C.

Proof. (a) Let f ∈Mk, f 6= 0. Then vz(f) ≥ 0 for all z ∈ H∪{∞}. So by the valence
formula we get k ≥ 0. Moreover a sum of non-negative integer multiples of 1

2
and

1
3

can’t equal 1
6
. Thus k 6= 2.

(b) Let f ∈ Sk, f 6= 0. Then v∞(f) ≥ 1, hence k ≥ 12 by valence formula.

(c) Let f ∈ M0. Then the constant function g := f(∞) is also in M0, so f − g ∈ S0

and therefore f = g since S0 = {0}.

Definition 1.6.4. Define

∆ =
E3

4 − E2
6

1728
.

Remark 1.6.5. In the prologue of this lecture we defined ∆ = q ·
∏

n∈N(1− qn)24. We
will prove later that this is indeed the same ∆ as the one in Definition 1.6.4.

Note 1.6.6. Since E4 and E6 are modular forms of weight 4 and 6, respectively, ∆ is
a modular form of weight 12. Since the q-expansion has zero constant coefficient, it is
indeed a cusp form.

Lemma 1.6.7. The modular form ∆ has a simple zero at ∞ and no other zeros.

Proof. Using the known q-expansions of E4 and E6, one can compute the q-expansion
of ∆ as

∆ = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + . . . ,

so ∆ has a simple zero at ∞. Now since ∆ is a modular form, all the quantities v?(∆)
occurring in Theorem 1.5.10 are non-negative, so the only way to get equality is if there
are no zeros apart from the one at ∞.
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Proposition 1.6.8. S12 is one-dimensional over C and spanned by ∆.

Proof. Let f ∈ S12 and define a function g by

g(z) = f(z)− f(i)

∆(i)
∆(z).

This function is well-defined since ∆ does not vanish on H, so ∆(i) 6= 0. Clearly g ∈ S12

and g(i) = 0. Using the valence formula yields

v∞(g) +
1

2
vi(g) +

1

3
vρ(g) +

∑
p∈W

vp(g) = 1.

But this is a contradiction since v∞(g) ≥ 1 and vi(g) ≥ 1. Therefore g has to be zero
and

f =
f(i)

∆(i)
∆ ∈ C ·∆.

Corollary 1.6.9.

1. For all k ∈ Z, the map
Mk → Sk+12, f 7→ f ·∆

is an isomorphism.

2. For k ≥ 4 we have Mk = Sk ⊕ (C · Ek).

Proof. The first statement is trivial for k < 0 since then Mk = Sk+12 = {0} by Lemma
1.6.3 (a), (b). So let k ≥ 0. As ∆ is non-vanishing the given map is clearly an injection.
Now let g ∈ Sk+12. Then g

∆
is weakly modular of weight (k + 12) − 12 = k and

holomorphic on H since ∆ is non-vanishing. Furthermore v∞(g) ≥ 1 by assumption, so

v∞

( g
∆

)
= v∞(g)− v∞(∆) = v∞(g)− 1 ≥ 0.

So g
∆
∈Mk. Therefore the given map is also onto, thus bijectiv.

For the second part of the corollary we just have to note that Sk is the kernel of the
linear map Mk → C, f 7→ f(∞). Thus we have dim(Mk/Sk) ≤ 1. On the other hand
we know that Ek ∈Mk \ SK since Ek(∞) 6= 0. So Mk = Sk ⊕ (C Ek).

Theorem 1.6.10.

(a) The space Mk is finite dimensional over C for all k ∈ Z.

(b) Let k ≥ 0 even. Then

dim(Mk) =

{
1 +

⌊
k
12

⌋
, k 6= 2 mod 12,⌊

k
12

⌋
, k = 2 mod 12.

Otherwise Mk = {0}.
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(c) A basis for Mk is given by {Ea
4E

b
6 : a, b ∈ N0, 4a+ 6b = k}.

Proof. (a) This is a consequence of part (b).

(b) We will prove this by induction on k. First of all note that the statement is clear
for odd k since there aren’t any nonzero weakly modular functions of odd weight.
Moreover we already know that dim(M0) = 1, dim(M2) = 0 and dim(Mk) = 0
for k < 0 by Lemma 1.6.3 (a) and (c). In addition we have dim(Mk) = 1 for
k = 4, . . . , 10 since dim(Mk) = dim(Sk) + 1 by Corollary 1.6.9 and Sk = {0} for
these k’s by Lemma 1.6.3 (b). Hence the statement is true for k = 0, . . . , 10.

Let now k ≥ 12. Then

dim(Mk) = dim(Mk−12) + 1

since dim(Sk) = dim(Mk−12) by Corollary 1.6.9. So the statement is true for all k
by induction in steps of 12.

(c) We will use again induction to prove the statement. Note that there is nothing to
show for odd k, k < 0 and k = 2 since in these cases Mk = {0}. The case k = 0
is also trivial because M0 is the set of all constant functions, hence generated by
1 = E0

4E
0
6 .

Let now k ≥ 4 be even. Obviously there is always a pair (a, b) such that a, b ∈ Z≥0

and 4a+6b = k. Pick such a pair. Let f ∈Mk. Then f can be written in the form

f = λ Ea
4E

b
6 + g

for some λ ∈ C and g ∈ Sk since the modular form Ea
4E

b
6 is in Mk and does not

vanish at infinity. So there is an h ∈Mk−12 such that g = h ·∆ by corollary 1.6.9
and by induction we may assume h to be a linear combination of Er

4E
s
6 where

r, s ∈ Z≥0 and 4r + 6s = k − 12. Hence

h ·∆ = h ·
(
E3

4 − E2
6

1726

)
is a linear combination of Er+3

4 Es
6 and Er

4E
s+2
6 and since

4(r + 3) + 6s = 4r + 6(s+ 2) = k

the function h is a linear combination of Ep
4E

q
6 with 4p + 6q = k. So the linear

span of these functions contains g and hence also f . Therefore

Mk = span{Ea
4E

b
6 : a, b ∈ N0, 4a+ 6b = k}.

To show that the given set is indeed a basis of Mk it suffices to check that∣∣{(a, b) ∈ Z2
≥0 : 4a+ 6b = k

}∣∣ = dim(Mk).

This can again be easily seen by induction in steps of 12 (exercise).
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Example 1.6.11. For the first few values of k, the dimensions of Mk and Sk are given
by

k dimMk dimSk
0 1 0
2 0 0
4 1 0
6 1 0
8 1 0
10 1 0
12 2 1
14 1 0
16 2 1

Example 1.6.12. Both, E2
4 and E8 are in M8. But dim(M8) = 1 by Theorem 1.6.10 (b).

Hence E2
4 and E8 are linearly dependent and as both are 1 at infinity, we can conclude

that E2
4 and E8 are equal. So(

1 + 240
∞∑
n=1

σ3(n)qn

)2

= E2
4 = E8 = 1 + 480

∞∑
n=1

σ7(n)qn

, so

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m).

This is very hard to prove (or even conjecture!) without using the theory of modular
forms.

Example 1.6.13. From the theorem, we deduce that

M30 = CE30 ⊕ C∆E18 ⊕ C∆2E6.

I claim that another basis for the same space is given by

M30 = CE5
6 ⊕ C∆E3

6 ⊕ C∆2E2
6 .

Note that these forms are linearly independent (exercise), so since dim(M30) = 3, they
form a basis.

The following theorem is a very useful consequence of the fact that the spaces of
modular forms are finite-dimensional:

Theorem 1.6.14. Let f be a modular form of weight k and level 1 with q-expansion∑∞
n=0 anq

n. Suppose that

aj = 0 for all j = 0, . . . , bk/12c.

Then f = 0.
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Proof. Suppose that f 6= 0. Then the hypothesis implies that

v∞(f) ≥ bk/12c+ 1 > k/12.

Hence the left-hand side of (1.3) is strictly greater than k/12, which gives a contradiction.

Corollary 1.6.15. Let f, g be modular forms of the same weight k and level 1, with
q-expansions

∑∞
n=0 anq

n and
∑∞

n=0 bnq
n, respectively. Suppose that

aj = bj for all j = 0, ..., bk/12c.

Then f = g.

Corollary 1.6.15 is a very powerful tool: it allows us to conclude that two modular
forms are identical if we only know a priori that their q-expansions agree to a certain
finite precision.

1.7 The q-expansion of ∆

The aim of this section is to prove the product formula for the q-expansion of ∆. We
start with the following definition:

Definition 1.7.1. We define

G2(z) =
∑
m∈Z

 ∑
n∈Z,(m,n) 6=0

1

(mz + n)2


and E2(z) = 3

π2 ·G2(z).

Lemma 1.7.2.

1. The series in Definition 1.7.1 is convergent, but not absolutely convergent, and
defines a holomorphic function on H1.

2. We have

G2(z) = 2ζ(2)− 8π
∞∑
n=1

σ1(n)qn.

Proof. 1. Exercise.
2. Argue as in the proof of proposition 1.4.5.

Proposition 1.7.3. The functions G2 and E2 satisfies the transformation property

z−2G2

(
−1

z

)
= G2(z)− 2πiz, (1.4)

z−2E2

(
−1

z

)
= E2(z)− 6i

πz
. (1.5)

1It is not a modular form, however: it can’t be, since M2 = {0}.
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The proof of this result is based on the following lemma, which gives an example of
two double series that contain the same terms but sum to different values due to the
order of summation being different.

Lemma 1.7.4. For all z ∈ H, we have∑
m6=0

∑
n∈Z

(
1

mz + n
− 1

mz + n+ 1

)
= 0, (1.6)

∑
n∈Z

∑
m6=0

(
1

mz + n
− 1

mz + n+ 1

)
= −2πi

z
. (1.7)

Proof. We start with the sum∑
−N≤n<N

(
1

mz + n
− 1

mz + n+ 1

)
=

1

mz −N
− 1

mz +N
.

Using this, we compute the inner sum of (1.6) as∑
n∈Z

(
1

mz + n
− 1

mz + n+ 1

)
= lim

N→∞

∑
−N≤n<N

(
1

mz + n
− 1

mz + n+ 1

)
(1.8)

= lim
N→∞

1

mz −N
− 1

mz +N
. (1.9)

= 0, (1.10)

which implies (1.6).
The proof of the second formula is more complicated, and I will not give the proof

here. For a reference, see Serre’s ”A course in Arithmetic”.

We can now prove Proposition 1.7.3:

Proof. Recall that

G2(z) = 2ζ(2) +
∑
m6=0

∑
n∈Z

1

(mz + n)2
.

Subtracting (1.6) and simplifying, we obtain the alternative expression

G2(z) = 2ζ(2) +
∑
m 6=0

∑
n∈Z

1

(mz + n)2(mz + n+ 1)
. (1.11)

Also, we have

z−2G2(−1/z) = 2ζ(2)z−2 +
∑
m 6=0

∑
n∈Z

1

(nz −m)2
(1.12)

= 2ζ(2) +
∑
m∈Z

∑
n6=0

1

(nz −m)2
(1.13)

= 2ζ(2) +
∑
n∈Z

∑
m 6=0

1

(mz + n)2
; (1.14)
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note that in the second equality we just relabelled the parameters, but did not change
the order of summation.

Subtracting (1.7) and simplifying, we obtain

z−2G2(−1/z) +
2πi

z
= 2ζ(2) +

∑
n∈Z

∑
m6=0

1

(mz + n)2(mz + n+ 1)
, (1.15)

and by imitating the proof of Lemma 1.4.3 one can show that the sum on the right-hand
side is absolutely convergent. We can hence change the order of summation, and we see
that (1.15) is equal to (1.11).

Corollary 1.7.5. The q-expansion of ∆ is given by

∆ = q
∏
n≥1

(1− qn)24.

Proof. Let D(z) = q
∏

n≥1(1− qn)24.

Let D(z) = q ·
∏∞

n=1 (1− qn)24 where q = e2πiz as usual. We can check that this
product converges sufficiently fast for D to be defined and holomorphic on H. Evidently
D(z + 1) = D(z) and D(z)→ 0 as =(z)→∞. So to check that it is a modular form of
weight 12 (clearly cuspidal), it suffices to show that D(−1

z
) = z12D(z). The result then

follow immediately, since we already know that S12 is 1-dimensional.
Recall that ∂d

∂z
= 2πiq ∂

∂q
. Then

∂

∂z
(log(D(z))) =

∂

∂z

(
log(q) +

∞∑
n=1

24 log(1− qn)

)

= 2πi+ 24
∞∑
n=1

−2πinqn

1− qn

= 2πi

(
1− 24

∞∑
n=1

nqn
∞∑
r=0

qr

)

= 2πi

(
1− 24

∞∑
n=1

∞∑
r=0

nqnr

)

= 2πi

(
1− 24

∞∑
n=1

σ1(n)qn

)
= 2πi E2(z).

Hence finally

∂

∂z

(
log

(
D(−1/z)

z12D(z)

))
=

1

z2
2πi E2

(
−1

z

)
− 12

z
− 2πi E2(z)

=
2πi

z2

(
E2

(
−1

z

)
−
(
z2E2(z) +

6z

iπ

))
= 0.
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So there is a constant λ sucht that D(−1
z
) = λz12D(z) for all z ∈ H. For z = i solves

this to D(i) = D(−1
i
) = λD(i), and since D(i) 6= 0 we have λ = 1, and therefore

D(−1
z
) = z12D(z).

We can now expand the product formula for ∆(z) as

∆(z) =
∑
n≥1

τ(n)qn for some τ(n) ∈ Z.

Conjecture 1.7.6. (Ramanujan, 1916)

1. For m,n coprime, we have τ(mn) = τ(m)τ(n).

2. For p prime and n > 0, we have

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1).

3. We have |τ(p)| ≤ 2p
11
2 for all primes p.

We will see a proof of properties 1) and 2) later in the course, in the section on Hecke
operators. Property 3) was proved by Deligne in 1974 as a consequence of his proof of
the Weil conjectures, for which he was awarded the Fields medal in 1978.
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2 Modular forms of higher level

The idea is to look at functions transforming nicely under subgroups of SL2(Z).

2.1 Congruence subgroups

Definition 2.1.1. For N ∈ N define the subgroup

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod N

}
.

We will call this group the principal congruence subgroup of level N .

Note 2.1.2. Γ(N) is the kernel of the group homomorphism induced by the reduction
map Z→ Z/NZ:

πN : SL2(Z)→ SL2(Z/NZ).

It is hence a normal subgroup of finite index. (Ex: show that πN is sujective. This
statement goes by the name of ”strong approximation for SL2”. It can be shown to be
false for GL2(Z).)

Definition 2.1.3. A subgroup Γ of SL2(Z) is called a congruence subgroup if there
exists N ≥ 1 such that Γ(N) ⊆ Γ. The least such N is called the level of Γ.

Lemma 2.1.4. Any congruence subgroup has finite index in SL2(Z).

Proof. It sufficies to show that [SL2(Z) : Γ(N)] <∞ for all N ∈ N. But this is clear as
SL2(Z)/Γ(N) ↪→ SL2(Z/NZ) and SL2(Z/NZ) is finite.

Remark 2.1.5. The converse to Lemma 2.1.4 is false. There exist finite index Γ ⊆
SL2(Z) which don’t contain Γ(N) for any N . (For example there is one of index 7.) But
every finite index subgroup of SLn(Z) is congruence for n ≥ 3. So SL2 is quite unusual.
(Bass-Serre-Milnor theorem)

Definition 2.1.6. Other standard congruence subgroups of level N are given by

• Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 ∗
0 1

)
mod N

}
,

• Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
∗ ∗
0 ∗

)
mod N

}
.
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Note 2.1.7. We have a chain of inclusions

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).

These inclusions are in general strict; however, all of them are equalities for N = 1, and
Γ0(2) = Γ1(2).

Lemma 2.1.8. For N ≥ 1, we have

[Γ1(N) : Γ(N)] = N, [Γ0(M) : Γ1(N)] = N
∏
p|N

(
1− 1

p

)
,

[SL2(Z) : Γ0(M)] = N
∏
p|N

(
1 +

1

p

)
.

Definition 2.1.9. Let Γ be a congruence subgroup. We say that Γ is even (resp. odd)
if − Id ∈ Γ (resp. Id 6∈ Γ). We define the projective index of Γ to be

dΓ = [PSL2(Z) : Γ̄],

where Γ̄ is the image of Γ in PSL2(Z).

2.2 Fundamental doins and cusps

Proposition 2.2.1. Let Γ be a congruence subgroup of SL2(Z), and let R be a set of
coset representatives for the quotient Γ\ SL2(Z). Then the set

DΓ =
⋃
γ∈R

γD

has the property that for any z ∈ H there exists γ ∈ Γ such that γz ∈ DΓ. Furthermore,
γ is unique up to multiplication by an element of Γ ∩ {± Id}, except possibly if γz lies
on the boundary of D. We call DΓ a fundamental domain for Γ.

Proof. If z ∈ H, thern there exists g ∈ SL2(Z) and z0 ∈ D such that g.z = z0. The coset
decomposition implies that we can express g uniquely as γ−1γ′ with γ ∈ Γ and γ′ ∈ R.
We now have

γ.z = γg.z0 = γ′.z0 ∈ DΓ.

The uniqueness is left as an exercise.

Example 2.2.2. Let Γ = Γ0(2). A system of representatives for the quotient Γ\ SL2(Z)
is {(

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
0 −1
1 1

)}
= {Id, S, ST}.

Using this, one can draw the fundamental domain for Γ.

Note that there are now two points in its closure which do not belong to H: the cusp
∞, as well as 0.
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Definition 2.2.3. The set P1(Q), the projective line over Q, consists of Q ∪ {∞}.
We give this an action of SL2(Z) via(

a b
c d

)
.x =

ax+ b

cx+ d

where the right-hand-side is interpreted as a
c

if x =∞, and as ∞ if cx+ d = 0.

Proposition 2.2.4. SL2(Z) acts transitively on P1(Q).

Proof. Clearly it sufficies to show that for any x ∈ P1(Q) we can map ∞ to x. For
x =∞ we have ∞.1 =∞. So let x = a

c
with a, c ∈ Z coprime. Then there are r, s ∈ Z

such that ar + cs = 1, thus
(
a −s
c r

)
∈ SL2(Z) and

(
a −s
c r

)
.∞ = x.

Note 2.2.5. An easy computation shows that the stabiliser of ∞ in SL2(Z) is the
subgroup

SL2(Z)∞ =

{
±
(

1 b
0 1

)
: b ∈ Z

}
.

It follows from Proposition 2.2.4 that we hence have a bijection

SL2(Z)/ SL2(Z)∞ → P1(Q),

γ SL2(Z)∞ 7→ γ∞.

Definition 2.2.6. For Γ ≤ SL2(Z) of finite index we define the set of cusps of Γ,
denoted by Cusps(Γ), as the set of Γ-orbits in P1

Q.

Example 2.2.7. Let p be prime. Then Cusps(Γ0(p)) = {[∞], [0]}.

Proof. Let u
v
∈ Q with u, v ∈ Z coprime. Then there are r, s ∈ Z such that ur+ vs = 1,

so
(
u −s
v r

)
∈ SL2(Z) and

(
u −s
v r

)
.∞ = u

v
. We will distinguish two cases:
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(1) If p divides v then
(
u −s
v r

)
∈ Γ0(p), so u

v
∈ [∞]. Conversly, if γ ∈ Γ0(p) then p

divides the denominator of γ.∞ by definition. So the orbit of ∞ is given by all
fractions u

v
with p dividing the denominator v.

(2) If v is not divisible by p we can note that

u(r + λv) + v(s− λu) = 1

and since p is not a divisor of v we find λ ∈ Z such that r′ = r + λv ∈ pZ.
Therefore

(
s′ u
−r′ v

)
∈ Γ0(p) where s′ = s − λu and

(
s′ u
−r′ v

)
.0 = u

v
by definition. So

u
v
∈ [0]. Conversly, if

(
a b
c d

)
∈ Γ0(p) then p does not divide d since ad − bc = 1.

Thus p cannot divide the denominator of γ.0. Therefore the orbit of 0 is given by
all fractions u

v
with p not dividing the denominator v.

So this is everything and there are exactly two distinct orbits as claimed.

Note 2.2.8. By Note 2.2.5, we see that

Cusps(γ) = Γ\ SL2(Z)/ SL2(Z)∞.

In particular, we have a sujective map

SL2(Z)/ SL2(Z)∞ � Cusps(Γ).

Definition 2.2.9. If P = [t] ∈ Cusps(Γ), denote by Γt the stabilizer for t in Γ.

Lemma 2.2.10. Choose γt ∈ SL2(Z) such that γt(∞) = t. Then

Γt = Γ ∩ γt SL2(Z)∞γ
−1
t .

Proof. Let h ∈ Γ. Then

h ∈ Γt ⇔ h.t = t

⇔ hγt(∞) = γt(∞)

⇔ γ−1
t hγt(∞) =∞

⇔ γ−1
t hγt ∈ SL2(Z)∞

⇔ h ∈ γt SL2(Z)∞γP t−1.

Note 2.2.11. It follows from the proof that we have an injection

Γt\(γ−1
t SL2(Z)∞γt) ↪→ Γ\ SL2(Z),

so Γt has finite index in γ−1
t SL2(Z)∞γt.
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Lemma 2.2.12. The subgroup

HP = γ−1
t Γγt ∩ SL2(Z)∞ ⊆ SL2(Z)

does not depend on the choice of representative for P , and it has finite index in SL2(Z)∞.

Proof. We first show that if we have elements γt and γ̃t in SL2(Z) such that γt.∞ = t
and γ̃t.∞ = t, then

γ−1
t Γγt ∩ SL2(Z)∞ = γ̃−1

t Γγ̃t ∩ SL2(Z)∞.

Note that γ−1
t γ̃t fixes ∞, so it is an element in SL2(Z)∞, say γ−1

t γ̃t = g ∈ SL2(Z)∞.
Then

γ̃−1
t Γγ̃t ∩ SL2(Z)∞ = g−1γ−1

t Γγtg ∩ SL2(Z)∞

= g−1
(
γ−1
t Γγt ∩ g SL2(Z)∞g

−1
)
g

= γ−1
t Γγt ∩ SL2(Z)∞.

Here, we get the last equality since γ−1
t Γγt ∩ g SL2(Z)∞g

−1 ⊆ SL2(Z)∞ and hence is
commutative, so in particular its elements commute with g.

Suppose now that we choose another element t in the Γ-orbit of t, and let γt′ ∈ SL2(Z)
such that γt′ .∞ = t′. Then we can write γt′ = gγt for some g ∈ Γ which satisfies g.t = t′.
Then

γ−1
t′ Γγt′ = γ−1

t g−1Γgγt = γ−1
t Γγ−1

t ,

and hence

γ−1
t′ Γγt ∩ SL2(Z)∞ = γ−1

t Γγt′ ∩ SL2(Z)∞.

Lemma 2.2.13. Let H be a subgroup of finite index in SL2(Z)∞, and let h be the index
of ±H in SL2(Z)∞. Then H is one of the following:

H =


〈( 1 h

0 1 )〉〈( −1 h
0 −1

)〉
= {(−1)t ( 1 th

0 1 ) : t ∈ Z}
{± Id} × 〈( 1 h

0 1 )〉

Proof. Exercise.

Definition 2.2.14. For H = HP , the integer hΓ(P ) = h in Lemma 2.2.13 is called the
width of the cusp P for Γ. The cusp P is

• irregular if HP is of the form
〈( −1 h

0 −1

)〉
(then Γ is necessarily odd),

• regular if HP is of the form 〈( 1 h
0 1 )〉 (so Γ is odd), of if HP is of the form {± Id}×

〈( 1 h
0 1 )〉 (so Γ is even).

30



Remark 2.2.15. If Γ is normal in SL2(Z), the subgroup HP does not depend on the
cusp P , and hence all the cusps have the same width and regularity.

Example 2.2.16. Let us determine the width of the two cusps in Cusps(Γ0(p)).

• c = [∞]: we need to determine the smallest h ≥ 1 such that ( 1 h
0 1 ) or

( −1 h
0 −1

)
are

in Γ0(p). Hence hΓ0(p)(∞) = 1, since ( 1 1
0 1 ) ∈ Γ0(p).

• c = [0]: note that g.∞ = 0 for g =
(

0 −1
1 0

)
. Moreover

g

(
a b
c d

)
g−1 =

(
d −c
−b a

)
,

so
(
a b
c d

)
∈ g−1Γ0(p)g if and only if b = 0 mod p. In particular,

(Γ0(p))[0] =
(
g−1Γ0(p)g

)
∩ P∞ = ±

(
1 pZ
0 1

)
.

So the width of the cusp 0 is p.

We now want to count the number of cusps for a given congruence subgroup. We need
the following group-theoretic result:

Proposition 2.2.17. Let G be a group acting transitively on a set X, and let H be a
subgroup of finite index in G.

(i) For any x ∈ X, StabH(x) has finite index in StabG(x), and we have an injection

StabH(x)\ StabG(x) ↪→ H\G

with image H\H StabG(x).

(ii) Let x0 ∈ X. Then there is a surjective map

H\G� H\X,
Hg 7→ Hg.x0

and for each x ∈ X, the cardinality of the fibre of this map over Hx equals the
index [StabG(x) : StabH(x)].

(iii) If R is a set of orbit representatives for the quotient H\X, we have∑
x∈R

[StabG(x) : StabH(x)] = [G : H].

Proof. (i) is standard.
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For (ii), the transitivity of the G-action on X implies that for all x ∈ X, we can choose
an element gx ∈ G such that gx.x0 = x, so the map H\G→ H\X is surjective. Denote
by THx the fibre of this map over Hx, i.e.

THx = {Hg ∈ H\G |Hg.x0 = H.x} .

Writing g as g′gx, we obtain a bijection

THx ∼= {Hg′ ∈ H\G |Hg′gx.x0 = H.x}
= {Hg′ ∈ H\G |Hg′.x = Hx}
= H\(H StabG(x))
∼= StabH(x)\ StabG(x),

where the last equality follows from (i).

(iii) Summing over R and using (ii), we obtain

[G : H] = |H\G| =
∑
x∈R

|THx| =
∑
r∈R

[StabG(x) : StabH(x)],

which finishes the proof.

Corollary 2.2.18. Let Γ be a congruence subgroup. Then∑
P∈Cusps(Γ)

hΓ(P ) = dΓ.

Proof. Apply Proposition 2.2.17 to G = PSL2(Z), H = Γ̄ and X = P1(Q).

2.3 Weakly modular forms for congruence subgroups

Definition 2.3.1. Let Γ ≤ SL2(Z) be a congruence subgroup, and let k ∈ Z. A
function f : H → C is a weakly modular function of weight k and level Γ if f is
meromorphic on H and f |kγ = f for all γ ∈ Γ.

Remark 2.3.2. Let k be odd and Γ be even. Let f be a weakly modular function of
weight k and level Γ. By Lemmas 2.2.12 and 2.2.13 there is h ∈ N such that ±

(
1 h
0 1

)
∈ Γ,

so

f = f |k
(

1 h
0 1

)
= f(·+ h) and f = f |k

( −1 −h
0 −1

)
= −f(·+ h).

Hence f(z) = −f(z) for all z ∈ H and therefore f = 0.

Example 2.3.3. Let f be weakly modular of level SL2(Z) and weight k. Then f(Nz)
is weakly modular of level Γ0(N) and weight k.

32



Proof. We have

f

(
N
az + b

cz + d

)
= f

(
aNz + bN

cz + d

)
= f

(
aNz + bN
c
N
Nz + d

)
.

If
(
a b
c d

)
∈ Γ0(N) then

(
a Nb
c/N d

)
∈ SL2(Z) and hence

f

(
aNz + bN
c
N
Nz + d

)
=
(( c

N

)
(Nz) + d

)k
f(Nz) = (cz + d)kf(Nz)

as required. So z 7→ f(Nz) is weakly modular of level Γ0(N).

2.4 q-expansion at ∞
Proposition 2.4.1. Let f : H → C be weakly modular of weight k and level Γ and let
h = hΓ(∞).

• If k is even or if k is odd, Γ is odd and ∞ is a regular cusp, then there is a
meromorphic function f̃ on the punctured disc D∗ such that f(z) = f̃(qh(z)) for
all z ∈ B where qh(z) = e2πiz/h.

• If k is odd, Γ is odd and ∞ is irregular, then there is a meromorphic function F̃
on D∗ such that f(z) = eπiz/hF̃ (qh(z)) for all z ∈ H where qh(z) = e2πiz/h.

Proof. By Lemma 2.2.13, at least one of ±
(

1 h
0 1

)
lies in Γ, so

f(z) =
(
f |k ±

(
1 h
0 1

))
(z) = (±1)kf(z + h)

for all z ∈ H.
If k is even then (±1)k = 1, so f = f(· + h), and if Γ is odd and ∞ is regular, then(

1 h
0 1

)
∈ Γ, so we also have f = f(·+ h). In both cases we can argue as in section 1.3.

If k is odd and Γ is odd but ∞ is irregular, then −
(

1 h
0 1

)
∈ Γ and therefore

f(z) = −f(z + h) ∀z ∈ H.

Define a function F on H by F (z) = f(z)e−πiz/h. Then

F (z + h) = e−πif(z + h)e−πiz/h = f(z)e−πiz/h = F (z).

So we can argue for F as before and get f(z) = eπiz/hF̃ (qh(z)).

Remark 2.4.2. We can hence write f(z) as a q-expansion at ∞:

f(z) =

{∑
n∈Z a∞,nq

n
h if k is even or if k is odd and Γ is odd and regular at ∞∑

n∈ 1
2

+Z a∞,nq
n
h if k is odd and Γ is odd and irregular at ∞
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Definition 2.4.3. Let f : H → C be weakly modular of weight k and level Γ. We say
that f is meromorphic at ∞ if f̃ is meromorphic at 0. Similarly we define f to be
holomorphic at ∞ if f̃ is holomorphic at 0. If f is meromorphic at ∞, we define

v∞,Γ(f) = min{n : a∞,n 6= 0}.}

We then say f is vanishing at ∞ if v∞,Γ(f) > 0. If f is holomorphic at ∞ we define

f(∞) =

{
f̃(0) if k is even or if k is odd, Γ is odd and ∞ is regular

0, if k is odd and Γ is odd and irregular at ∞.

2.5 q-expansion at a cusp

To define the q-expansion at a general cusp, we need the following result:

Lemma 2.5.1. Let f : H → C be weakly modular of weight k and level Γ and let g ∈
SL2(Z)∞ but not necessarily in H∞. Then f |kg is meromorphic at ∞ if and only if f is.
Moreover v∞,g−1Γg(f |kg) = v∞,Γ(f) and (f |kg)(∞) = f(∞) if defined and if k is even.

Proof. We check that f |kg is indeed weakly modular of weight k and level g−1Γg since

(f |kg) |k
(
g−1γg

)
= (f |kγ) |kg = f |kg.

Moreover we have

hg−1Γg(∞) =
[

SL2(Z)∞ : g−1H∞g
]

=
[

SL2(Z)∞ : H∞

]
since SL2(Z)∞ is abelian and g ∈ SL2(Z)∞.

Now let g = ±
(

1 t
0 1

)
. Then

(f |kg)(z) =

{
(±1)kf̃

(
e2πit/hq

)
, if k is even or if k is odd, Γ is odd and ∞ is regular,

(±1)keit/hF̃
(
e2πit/hq

)
, if k is odd and Γ is odd and irregular at ∞.

.

So f |kg is meromorphic or holomorphic at ∞ if and only if so is f , and the orders of
vanishing are equal.

Definition 2.5.2. Let f be weakly modular of weight k and level Γ. Let P ∈ Cusps(Γ)
be represented by an element t ∈ P1(Q) and choose some γt ∈ SL2(Z) such that γt.∞ = t.
Define vP,Γ(f) = v∞,γ−1

t Γγt
(f |kγt).

The following proposition shows that vP,Γ(f) is well-defined.

Proposition 2.5.3.

1. Let γ′t ∈ SL2(Z) be another element such that γ′t.∞ = t. If f |kγt is meromorphic
at ∞, the same holds for f |kγ′t, and their orders of vanishing at ∞ are equal.
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2. Let s be another representative of P , and let γs ∈ SL2(Z) such that γs.∞ = s.
Then

v∞,γ−1
s Γγs

(f |kγs) = v∞,γ−1
t Γγt

(f |kγt).

Proof. (1) We have γ−1
t γ′t ∈ SL2(Z)∞. We hence deduce from Lemma 2.5.1 that f |kγt is

meromorphic at ∞ if and only if so is

(f |kγt)|k(γ−1
t γ′t) = f |kγ′t,

and they have the same order.
(2) Exercise.

Note 2.5.4. Note that we can define f(P ) = (f |kg)(∞) if f is holomorphic at P and if
k is even, but if k is odd, then f(P ) is only defined up to change of sign.

Definition 2.5.5. We say that f is holomorphic at P if vP,Γ(f) ≥ 0 and that f is
vanishing at P if vP,Γ(f) > 0.

Definition 2.5.6. We say f is a modular function if f is meromorphic at every cusp,
f is a modular form if f is holomorphic on H and at every cusp, and f is a cusp
form if f is holomorphic on H and vanishes at every cusp.

We define Mk(Γ) to be the space of modular forms of level Γ and Sk(Γ) to be the
space of cusp forms of level Γ.

2.6 Behaviour at ∞
Let

P∞ =

{(
a b
c d

)
∈ SL2(Z) : c = 0

}
.

Any elemnt of P∞ looks like
(

1 x
0 1

)
or
( −1 x

0 −1

)
for x ∈ Z, so there is an obvious isomorph-

ism P∞ ∼= Z× Z/2Z.
For Γ ≤ SL2(Z) let Γ∞ = Γ ∩ P∞. If [SL2(Z) : Γ] < ∞ then [P∞ : Γ∞] < ∞ also.

Hence we have:

Proposition 2.6.1. For Γ ≤ SL2(Z) of finite index exactly one of the following holds:

• Γ is even and there is h ∈ N such that Γ∞ =
{
±
(

1 th
0 1

)
: t ∈ Z

}
.

• Γ is odd and there is h ∈ N such that Γ∞ =
{(

1 th
0 1

)
: t ∈ Z

}
. In this case we say

Γ is odd and regular at ∞.

• Γ is odd and there is h ∈ N such that Γ∞ =
{

(−1)t
(

1 th
0 1

)
: t ∈ Z

}
. In this case we

say Γ is odd and irregular at ∞.

Proof. Look at Γ∞ = Γ∞/(Γ∞ ∩ {±1}). This is a finite index subgroup of P∞ and
clearly P∞ ∼= Z. So Γ∞ ∼= hZ for some h ∈ N. Now choose an element g ∈ Γ∞ whose
image generates Γ∞. Then either
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• g ∈ Γ∞ and −g ∈ Γ∞, so we may assume g =
(

1 h
0 1

)
and {g,−1} generate Γ∞,

• or −1 /∈ Γ∞, so g is
(

1 h
0 1

)
or
( −1 −h

0 −1

)
and −g /∈ Γ∞, giving the other two cases.

We will call the integer h introduced in the previous proposition the width of the
cusp ∞ for Γ. So the width of ∞ for Γ1(N) is 1 for all N , as

(
1 1
0 1

)
∈ Γ1(N), but the

width of∞ for Γ(N) is N . We will write this as h∞(Γ) and note that h∞(Γ) = [P∞ : Γ∞]
which matches the least h ∈ N such that at least one of

(
1 h
0 1

)
and

( −1 −h
0 −1

)
lies in Γ.

Proposition 2.6.2. Let f : H → C be weakly modular of weight k and level Γ and let
h = h∞(Γ).

• If k is even or if k is odd and Γ is odd and regular at∞ then there is a meromorphic
function f̃ on the punctured disc B = {q : 0 < |q| < 1} such that f(z) = f̃(qh(z))
for all z ∈ B where qh(z) = e2πiz/h.

• If k is odd and Γ is odd and irregular at ∞ then there is a meromorphic function
f̃ on the punctured disc B such that f(z) = eπiz/hf̃(qh(z)) for all z ∈ B where
qh(z) = e2πiz/h.

Note that we are not considering the case in which k is odd and Γ is even since this
case is trivial by a previous remark.

Proof. We have that at least one of ±
(

1 h
0 1

)
lies in Γ by proposition 2.6.1, so for all z ∈ H

holds
f(z) =

(
f |k ±

(
1 h
0 1

))
(z) = (±1)kf(z + h).

If k is even then (±1)k = 1, so f = f(· + h), and if Γ is odd and regular at ∞ then(
1 h
0 1

)
∈ Γ, so we also have f = f(·+ h). In both cases we can argue as in section 1.3.

To be continued.
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